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ABSTRACT

Critiquing is a method for conversational recommendation that
iteratively adapts recommendations in response to user preference
feedback. In this setting, a user is iteratively provided with an item
recommendation and attribute description for that item; a user
may either accept the recommendation, or critique the attributes
in the item description to generate a new recommendation. Histor-
ical critiquing methods were largely based on explicit constraint-
and utility-based methods for modifying recommendations w.r.t.
critiqued item attributes. In this paper, we revisit the critiquing
approach in the era of recommendation methods based on latent
embeddings with subjective item descriptions (i.e., keyphrases from
user reviews). Two critical research problems arise: (1) how to co-
embed keyphrase critiques with user preference embeddings to
update recommendations, and (2) how to modulate the strength of
multi-step critiquing feedback, where critiques are not necessarily
independent, nor of equal importance. To address (1), we build
on an existing state-of-the-art linear embedding recommendation
algorithm to align review-based keyphrase attributes with user pref-
erence embeddings. To address (2), we exploit the linear structure
of the embeddings and recommendation prediction to formulate
a linear program (LP) based optimization problem to determine
optimal weights for incorporating critique feedback. We evaluate
the proposed framework on two recommendation datasets contain-
ing user reviews with simulated users. Empirical results compared
to a standard approach of averaging critique feedback show that
our approach reduces the number of interactions required to find a
satisfactory item and increases the overall success rate.
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1 INTRODUCTION

Critiquing is a method for conversational (a.k.a. sequential interac-
tive) recommendation that adapts recommendations in response to
user preference feedback regarding item attributes. For example,
in unit critiquing [1], a user might critique a digital camera rec-
ommendation by requesting an item with higher resolution and in
compound critiquing [10, 12], a user might further explore items
that have longer battery life and lower price than an initial recom-
mendation. Further extensions such as incremental critiquing con-
sider the cumulative effect of iterated critiquing interactions [11]
while experience-based methods attempt to collaboratively leverage
critiquing interactions from multiple users [8].

Historical critiquing methods were largely based on constraint-
and utility-based methods for modifying recommendations w.r.t.
critiques of explicitly known item attributes. In this paper, we revisit
the critiquing approach in the era of state-of-the-art recommen-
dation methods based on latent embeddings [4, 5, 13, 14, 18]. In
addition, we assume that item attributes are not explicitly known,
but rather represented as keyphrases sourced from subjective user
reviews. Though some work has focused on explanations in cri-
tiquing [12] and other work [2, 16, 17] has respectively explored
speech- and dialog-based interfaces for critiquing-style frameworks,
these architectures have nonetheless assumed that item attributes
are largely orthogonal and explicitly known a priori, or otherwise
could only handle a single critiquing step before resetting [17].

In our novel setting of multistep latent critiquing, it is not im-
mediately clear how critiques of subjective keyphrases should be
incorporated into the latent user preference representation to modu-
late future recommendations. To this end, we formalize and address
two critical research problems in this paper:

(1) How can we co-embed item critiques with general user pref-
erence information to properly take the critiques into ac-
count for subsequent recommendations?

(2) How can we appropriately modulate the strength of each
critique in multi-step critiquing feedback, where critiques
are not necessarily independent, nor of equal importance?

To address problem (1), we extend an existing state-of-the-art lin-
ear embedding recommendation algorithm that we term Projected
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Linear Recommendation (PLRec) [13] to embed user preferences
and align review-based keyphrase attributes with those embed-
dings. To address problem (2), we exploit the linear structure of the
embeddings and recommendation prediction to formulate a linear
program (LP) based optimization problem to determine optimal
weights for incorporating critique feedback. To this end, we refer
to our overall framework as latent linear critiquing (LLC) since it
exploits linear embedding structure to perform latent critiquing.
We evaluate LLC on two recommendation datasets containing
user reviews with simulated users. Empirical results compared to
standard approaches for averaging critique feedback show that our
LP LLC approaches reduce the number of interactions required to
find a satisfactory item and increases the overall percentage of suc-
cessfully retrieved items in our experimental setting. In summary,
this paper provides a novel critiquing method for manipulating
latent user embeddings through efficient LP-based optimization.

2 PRELIMINARIES
2.1 Notation

Before proceeding, we define the following notation:

e R e RIIXIJI This is a user preference matrix. Entries r; j are
either 1 (preference observed) or 0 (preference not observed).
r; represents all feedback from user i, and r. ; represents all
user feedback for item j.

e S e RIXIKI This is the user-keyphrase matrix. Given user
reviews from a corpus, we extract keyphrases that describe
item attributes from all reviews as shown in Table 1. This
matrix contains user and term frequencies of keyphrases.
We use s; for ith user’s count of keyphrase usage in their
reviews, and s, i for the kth keyphrase count over all users.

o & e RUMXIKI This is the item-keyphrase matrix. Given
item reviews written by all users from a corpus, we extract
keyphrases that describe item attributes as shown in Table 1.
This matrix contains total keyphrase counts (frequencies)
in reviews for each item and keyphrase term. We use s;.
to represent jth item’s keyphrase frequencies, and s/ i to
represent kth keyphrase’s frequency across all items. ’

o j ke {j|5]’. i = 0,¥/j}. This item set represents items that do
not contain the critiqued keyphrase k.

o jtk ¢ {j|5;,k > 0,Vj}. This item set represents items that
contain the critiqued keyphrase k.

2.2 Projected Linear Recommendation

Linear Recommendation methods learn a matrix representing
either user-user or item-item similarity by casting the problem
in a linear regression framework [9, 15]. An unconstrained linear
recommender uses an objective of the following form:

argmin Z |
W

where W represents the similarity matrix to train, and Q is a regular-
ization term. Unfortunately, in modern recommendation problems
that have large numbers of users and items, such naive linear recom-
mendation approaches are infeasible due to the space requirements
of explicitly storing the similarity matrix W.

2
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Table 1: The two datasets we use in this paper along with
example keyphrases extracted from reviews in the dataset.

Dataset ‘ Reason Type Keyphrases

Head white, tan, offwhite, brown

Beer Malt roasted, caramel, pale, wheat, rye
Color golden, copper, orange, black, yellow
Taste citrus, fruit, chocolate, cherry, plum
Genre rock, pop, jazz, rap, hip hop, R&B

CDs&Vinyl | Instrument orchestra, drum

Style concert, opera
Religious chorus, christian, gospel

Projected Linear Recommendation (PLRec) is a term that we
use for the state-of-the-art recommendation method of [13] that
mitigates the scalability problem described above by projecting
preferences from R into a reduced-dimension embedded space prior
to linear regression. Formally, the PLRec objective is defined as

argv{]nin ZI: )

where parameters W are learned and V is a fixed embedding pro-
jection matrix. It is critical to note here that because V is fixed, the
above objective still leads to a convex linear regression problem.
PLRec obtains V by taking a low-rank SVD approximation of the
observation matrix R such that R = USV7', and the rank |L| of V is
far smaller than the observation dimensions |I| and |J|. We denote
the projected, embedded representation of user i as z; = r;V.

2
i — rl-vaH2 +Q(W), (2)

2.3 Conversational Critiquing

In the conversational critiquing setting of this paper, a user is itera-
tively provided with item recommendations and keyphrase descrip-
tions for that item; a user may either critique the keyphrases in
the item description or accept the item recommendation, at which
point the iteration terminates. Two examples of a conversational
critiquing interaction from our experiments are provided in Table 2.
A single critiquing step can be viewed as a series of functional
transformations that produce a modified prediction t; of item pref-
erences for user i given critiqued item keyphrases s; as follows:

ti = fm(ri,8;), given §; =Y(si,ci), (3)

where the critique-modified recommendation function f, takes
user preferences r; and critiqued keyphrases s; as input and pro-
duces a recommendation ; as output. The function ¢ applies a user
critiquing action c; to user keyphrases s;.

In the case of critiquing over multiple time steps as demonstrated
in Figure 1, a user is iteratively provided with the item recommen-
dations i‘f for each time step ¢, and, based on the recommendations,
the user may make a new critique cf and update the representa-
tion of critiqued keyphrases 55_1 though a cumulative critiquing
function ¢:

<t -1 .t

$; = Y(si.8; . c;). 4)
The user may alternately accept the item recommendation, at which
point the iteration terminates.
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Table 2: User Case Study for target rank 1 on the CDs&Vinyl and Beer datasets.

Dataset ‘ Time Step t Recommended Item Top Keyphrases Describing the Item  Critiqued Keyphrase =~ Successfully Retrieved?
0 No Code Rock, Metal, Rap Rap -
CDs&Vinyl 1 Jar Of Flies Rock, Pop, Ballad Pop -
2 Pearl Jam Rock, Metal, Instrument - v
0 Sierra Nevada Southern Hemisphere Harvest Fresh Hop Ale Citrus, Sweet, Caramel Citrus
Beer 1 Maharaja Sweet, Orange, Grapefruit Grapefruit -
2 Fuller’s ESB Caramel, Fruit, Copper - v
~At—1 ~t At+1
E t 1
at t+1
‘ fTIL(rZ7 i ) ‘ ‘ fm(ri»si) ‘ ‘ f'm(ru 7,+ ) ‘
T i T
at—2 ~t 1 ~t t+ 1 at+1
S; —»‘ (si, 8! ‘—»‘ ¥(si,8; ,¢;) ‘—»‘ ) ‘—»si
Si
t—1 t t+1
c; c; c;

Figure 1: The flow of conversational critiquing over three time steps. Previously critiqued keyphrases s s

combined by ¢/ with the newly critiqued keyphrase c’ c”

t — 1 for user i is produced from the user’s historical preferences r; and cumulatlve critiques s

Z at time ¢ — 2 are

Lat time ¢ — 1 to yield st 1. The recommendatlon produced by f, at time

up to time ¢ — 1. This process

repeats for all ¢ until the user accepts the recommendation (or terminates) and ceases to prov1de additional critiques.

At this point we have defined the generic functional structure of
the overall critiquing process, but we still need to provide formal
definitions of f;; and ¢ to address the critical problem of how
keyphrase critiques modulate recommendations. We now proceed
to do this in the specific setting of latent linear conversational
critiquing that extends and leverages the linearity of PLRec.

3 LATENT LINEAR CONVERSATIONAL
CRITIQUING

In this section, we begin by extending the PLRec framework to em-
bed language-based feedback mined from user reviews that will be
used for co-embedding critiques with user preferences from PLRec.
We then show how to combine critiques in a linear framework
where we propose methods for both simple critique averaging and
a more sophisticated framework for deriving critique weights by
leveraging a novel linear programming optimization formalization.

3.1 Co-embedding of Language-based Feedback

First we augment the PLRec framework with the ability to embed
language-based critiquing feedback in the same space as user pref-
erences. To achieve this, we leverage recommendation datasets with
both preference and review feedback from users.

PLRec naturally embeds user preferences over items into a latent
space as described in Equation (2). Once this latent embedding for
a user is obtained, we learn to embed keyphrase-based critiques for
a user by training to recover a user’s latent preference embedding
from the preference content implicitly revealed via their reviews.

To make this concrete, for each user i, PLRec encodes their latent
preference representation z; as in Equation (2). In addition, we have
review content for each user represented as a term frequency vector

ri—ip (r;, V1) EZW i i i

| e Z) HE @) s
o i Z; i P i
S;—>| diag(s IWE + B ; P !
3 Encodlng i 3 Merging 1 3 Decoding i
fm(')

Figure 2: The structure of critiqued recommendation f(-).
Historical user preferences r; and critiqued keyphrases s;
from user i flow in at the left and are embedded into respec-
tive latent spaces (i.e., a single vector embedding z; for pref-
erences and a matrix Z; containing embeddings for each cri-
tique). These latent embeddings are then combined in the
merging stage (a critical contribution of the paper) and fi-
nally decoded into new item recommendations t; for user i
on the right that take into account their critiques.

(user keyphrases) s;. With this, we can now cast the co-embedding
task as the following linear regression problem:

argmin ) |z ~ 2 + Q(W2). 5)
‘/Vz,b i
where
7 =siW +b (6)

and W € RIKIXILI projects users’ review text to into their latent
representation and b is a bias term. We will show how to use the
learned regression model to conduct critiquing in next section.
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3.2 Latent Linear Critiquing

In this section, we aim to specify how the critiquing-based recom-
mendation system can make new recommendations after a user i
has provided critiques c} e cf over t iterations (as demonstrated in
Figure 1 and 2), where critiques cf are encoded as one-hot keyphrase
indicators that represent a user i’s dislike of a keyphrase description
at time step t.

We start off by recalling that for a fixed user i and item j, the
prediction of an item preference 7; j can be written as an inner
product (-, -) of the user and item embedding:

Fi,j = (zi, W;j), (7)

where user representation z; comes from the embedding of a user’s
historical preferences and w; is the row of W corresponding to
item j’s latent embedding.

As mentioned previously, to transform the user’s critiques c;
into an embeddable term frequency representation that can be co-
embedded with user preference embeddings, we use the cumulative
critiquing function defined as follows:

= 1(si, §; st~ ,ct) = ~t 1_ max(s;, 1) © cf, 8)

where O represents element-wise multiplication of two vectors and
the initial §(i) is a zero vector of length |K|. The rationale for using
max(sj, 1) © cf is twofold: (i) the critiqued keyphrase should be
embedded with a strength similar to the user’s overall frequency
usage of the keyphrase (otherwise the linear embedding may have
a small magnitude), hence s; © cf , but (ii) if the user did not use the
keyphrase, it should receive a non-zero frequency, hence max(-, 1).
With the critiqued keyphrases §It and the mapping between
keyphrase and user latent representation learned in Equation (5),
we provide a latent representation of all critiques in matrix form

Z! = diag(s" )W, + B, ©)

where each row ii‘ of the matrix Z; represents latent representation
of the kth critiqued keyphrase, and each row of B is the identical
bias term b. While the matrix Z; appears large, it is sparse and
simply used here for notational convenience to represent stacking
of all critiqued keyphrase embeddings in matrix form.

Under an assumption that critiques at each time step should
be weighted equally (with the user preference), we define simple
Uniform Average Critiquing by specifying the merging function

$a(zi, Z}) = dozi +Mi,1-"'/1|1<\ilm, (10)

where g, A1, . . ., 4| are identical and sum to 1 (hence all A’s equal

K] +1) Note that we omit the identical time step ¢ superscripts to
reduce notational clutter. Clearly, this merging function averages
the user preferences and critiqued keyphrase embeddings uniformly
We can then obtain the refined recommendation score 7 of each
user i for item j at time step ¢ by decoding the latent representatlon
and rearranging terms as follows:

ff,j = {(p1(zi, Zi), W)

<(/10Zi + Ali} + -

4 A, w) 11)

‘K',wj>) ,

1 -
m ((z,-,Wj) + <Z},Wj> + 4+ (Z
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where the second line substitutes the definition of ¢ (z;, Z;) from
Equation (10) and the final line distributes the inner product over
the summation but factors out the common coefficient.

An alternative approach we call Balanced Average Critiquing
averages critique embeddings Z; together and then averages them
again with the user preference embedding, thereby balancing the
critique and user embeddings. This user-balanced average reflects
the notion that user preferences after critiques should not devi-
ate too drastically from the base user preferences to begin with.
Formally, we define the merging function as

~ - ~|K
DAz Z0) = dozi + Mz} + -+ Al

12
Al ed).

where A9 = % and the remaining A’s equal

KT
Unfortunately, the simple average critique weighting assumption
described above can be violated in a few ways in practice:

o Not all critiques are equal. More specifically, later critiques
may be more subtle refinements of earlier critiques.

o Not all critiques are independent. For instance, two critiques
may substantially overlap while another critique may be
more orthogonal to the first two and deserve more weight.

Therefore, we look for better solutions by seeking a way to optimize
the weights used to merge critiques.

3.3 LP-based Critiquing Optimization

Based on the above criticisms, we revisit the merging function in
the linear form of Equation (10) for arbitrary A’s and consider that
each critique embedding has an additive linear impact on the rating:

~ ~|K
rlt’j = (A()Zi +/112}~--/1|K|Zl l,Wj> (13)
~ ~|K
= (Aozi, Wj) + (MZ}, Wiy + - + <A|K|Zl I’Wj> :
Now, the question is how can we automatically find a better non-
uniform weighting, i.e., optimal A values?

In short, we can view this question as a formal optimization of
the A’s in Equation (13). While the design of such an optimization

problem is inherently subjective, there are a few key desiderata:
o The rating of items known to have the critiqued keyphrase
description (j**) should be minimized.
o Inversely, the rating of items not known to contain the cri-
tiqued keyphrase (%) should be maximized.
e Because we are ranking and A weights could be infinite if
unbounded, we need to ensure the A are finitely bounded.

3.4 Optimization Objective

Based on the above desiderata, we arrive at the following linear
objective of optimal critique weighting for each time step ¢

max ZZ( ik —r +k), (14)

<K kK

where we choose user and critique embedding weights Ao, . . ., A |
to maximize the pairwise difference of ratings of non-critiqued
items j_k with critiqued items j*%. To limit computational com-
plexity, we consider the top-100 rated items meeting the criteria for

k and j=* since other items are less likely to be seen by the user.
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Critically, since all of the embeddings are fixed, we see that the
objective in Equation (14) is linear in the optimized variables and
this is in fact a simple linear programming (LP) formulation of our
desiderata. This is a fortuitous observation since LPs can be solved
efficiently at scale (millions of variables and constraints), which
enables practical deployment of this optimized weighting approach.

We propose three different LP constraint candidates:

e LP Option 1: Here, we assume the weighting of the orig-
inal user preferences remain unchanged (19 = 1). For the
critique weights A; (i > 0), we allow for the fact that some cri-
tiques may partially cancel out others (i.e., having a negative
weight) in the event of non-independence:

Ao = 1,/11---|K| € [-1,+1] (15)

e LP Option 2: While we previously chose the critique em-
bedding with the intent that a latent weighting of A;... x| €
[-1, +1] should be a sufficient range (cf. discussion follow-
ing Equation (8)), we now check this assumption by simply
increasing the allowable range from [-1, 1] to [—-r, +r]:

Ao =1,4..k| € [-r.+r], where 1€ [1,0) (16)

e LP Option 3: Here, we require all A’s to be positive and sum
to one, forcing the A’s to “compete” with each other. We also
allow the LP to zero out Ag to ignore base user preferences:

Zlnzl, and M.k €[0,1] 17)
n=0

We remark that LP1 and LP2 with pure bound constraints admit
a greedy solution since the optimal A;’s must be at the bound limits.
Though not intuitive, these extreme weights work well empirically.

4 EXPERIMENTS
4.1 Dataset and Code

We evaluate the LLC framework on two publicly available datasets
using simulated users for large-scale comparative evaluation: Beer-
Advocate [6] and Amazon CDs&Vinyl [3, 7]. Each of the datasets
contain 100,000+ reviews and product rating records. For Top-N
ranking evaluation, we binarize the rating column of both datasets
with rating threshold ¢ (¢ > 3 out of 5 for CDs&Vinyl, 3 > 4 out
of 5 for BeerAdvocate). Table 3 shows overall dataset statistics for
our experiments. Code to reproduce all experiments is on github.!

4.2 Automated Keyphrase Extraction

We extract descriptive keyphrases from reviews (cf. Table 1) that
may represent variant expressions for the same concept; this is
different from aspects that tend to be independent attributes [19].
We used the following steps to extract candidate keyphrases:

(1) Extract separate unigram and bigram lists of high frequency
noun and adjective phrases from reviews of the entire dataset.

(2) Prune the bigram keyphrase list using a Pointwise Mutual In-
formation (PMI) threshold to ensure bigrams are statistically
unlikely to have occurred at random.

(3) Represent each review as a sparse 0-1 vector indicating
whether each keyphrase occurred in the review.

'https://github.com/k9luo/LatentLinearCritiquingforConvRecSys.
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Table 3: Summary of datasets. We selected 40 keyphrases for
CDs&Vinyl and 75 keyphrases for BeerAdvocate. Keyphrase
coverage shows the percentage of reviews/comments that
have at least one selected keyphrase.

. Keyphrase
Dataset #Users #Items |[r;j > 9| SRZ:;? I(Cegffe};;as: Average Counts
P Y & (per User)
CDs&VInyl 10006 4305 152670 0.5736%  75.48% 13.9969
(Amazon)
Beer 6370 3.668 263278  1.1268%  99.29% 55.1088
(BeerAdvocate) ? ’ ’ ’ ° o :
Algorithm 1 User Simulation Evaluation
1: procedure EvaL(R¢ for test)
2 for each user i do
3 for each target item j, where rl? _‘}. =1do
4 for time step ¢ € range(1, MAX) do
5 user act critique c?
6 optimize Ag...A;
. st . s1 .. SIKI
7: i (ozi + MZ; +- - Ak |Z; ', Wj)
if j in Top-N recommendation list then
9: break session with success
10: length « min(t, MAX)
11: return average success rate & length

4.3 Critiquing User Simulation Evaluation

In order to perform an evaluation of each model’s performance in
a multi-step conversational recommendation scenario using offline
data provided in our datasets, we conduct an evaluation by user
simulation. Concretely, as described in Algorithm 1, we track the
conversational interaction session of simulated users by randomly
selecting a target item from their test set, having the user critique
keyphrases inconsistent with the target item, and repeating until
an iteration limit or the target item appears within the top-N rec-
ommendations on that iteration. For each user, we collect results
from three simulated sessions and estimate the average success rate
as well as the average session length for model comparison. Two
example user critiquing simulations with LP1 are shown in Table 2.

The Top-N ranking threshold in this experiment is selected from
{1,5, 10}, where success becomes easier with increasing N. The
maximum allowed critiquing iterations in Algorithm 1 is set to 10.

4.4 Candidate Critiquing Algorithms

Before listing the critiquing algorithms we compare, we first intro-
duce a method that has omniscient knowledge of target items and
the correctness of keyphrase descriptions that we term “Oracular
Upper Bound”. In general we cannot assume keyphrase labels are
accurate descriptions nor can we assume that all relevant keyphrase
labels occur for an item (they are derived from sparse user review
content) and hence in practice we cannot simply prune all items
that contain a critiqued keyphrase. However, if we “cheat” and
assume knowledge of the user simulation and the perfect nature
of keyphrase labels that are provided to the user in the simulation,
we can define the “Oracular Upper Bound” that perfectly prunes
the recommendation list after each critique. Because this assumes
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Table 4: Average percentage of target items successfully retrieved within Top-N (1,5,10) with 95% confidence intervals.

Model CDs&Vinyl Beer
Success Rate@1 Success Rate@5 Success Rate@10 ‘ Success Rate@1 Success Rate@5 Success Rate@10

Oracle-UB 0.1332+0.0037 0.2819+0.0085 0.3718+0.0033 ‘ 0.4419+0.0199 0.7064+0.0258 0.7853+0.0141
UAC 0.1192+0.0066 0.2408+0.0115 0.3123+0.0091 0.12+0.0038 0.2847+0.0047 0.3932+0.016
BAC 0.1232+0.0063 0.2587+0.0075 0.3382+0.0105 0.1154+0.0047 0.2924+0.0139 0.3906+0.0164
LP1 0.1301+0.0111 0.2722+0.0154 0.3426+0.0125 0.149+0.0072 0.3391+0.009 0.4524+0.006
LP2 0.0379+0.0061 0.1025+0.0041 0.153+0.0044 0.0851+0.0066 0.2229+0.0086 0.3145+0.0107
LP3 0.0663+0.0059 0.1693+0.0035 0.2282+0.0071 0.0961+0.0125 0.2513+0.0175 0.3495+0.0024

Table 5: Average length of sessions to achieve Top-N (1,5,10) target ranks with 95% confidence intervals.

Model CDs&Vinyl Beer
Average Length@1 Average Length@5 Average Length@10 ‘ Average Length@1 Average Length@5 Average Length@10
Oracle-UB ‘ 4.5791+0.0665 3.9914+0.0486 3.6254+0.0525 ‘ 5.1709+0.0588 3.8794+0.1312 3.3377+0.1227
UAC 9.0335+0.0384 7.9361+0.1104 7.2785+0.0841 6.1647+0.081 5.388+0.0765 4.8398+0.0166
BAC 8.984+0.0534 7.7693+0.0584 7.0648+0.089 6.3795+0.1538 5.535+0.141 5.0138+0.1103
LP1 8.4136+0.0605 7.2963+0.1347 6.693+0.1276 5.7623+0.1357 4.9893+0.128 4.4925+0.1026
LP2 9.674+0.0656 9.1579+0.0504 8.7434+0.0335 6.4092+0.0396 5.8067+0.056 5.3961+0.1076
LP3 9.4715+0.0417 8.629+0.0327 8.1493+0.078 6.4367+0.1385 5.7517+0.1646 5.3186+0.0679
72 Oracle-UB  E&& UAC BAC E= LP1 KX LP2 LP3 performance of all methods on Beer than CDs&Vinyl since overall
210 o 10 learning quality generally improves with information density.
% os % os The results illustrate that Oracle-UB behaves as an upper bound
i g .l as expected. For the non-oracular methods, LP1 consistently out-
5 5 performs the two baselines (UAC and BAC) and other LP variants
¥ 0.4 ¥ 0.4+ .
g g across datasets and target ranks. LP1 finds a good weight trade-off
g 2 _ g 2 between base user preferences and critique. LP3 shows a higher
 00- Top20% ltems  Tail80% ltems Z 00- Top20% Items  Tail80% ltems success rate than LP2 across datasets and target ranks. The aver-
Item Split Item Split age critiquing session length results closely reflect the success rate
(a) CDs&Vinyl (b) Beer results — a higher success rate leads to earlier session termination.

Figure 3: Long tail item analysis average success rate at tar-
getrank 5 comparison for different critiquing algorithms on
CDs&Vinyl and Beer with 95% confidence interval.

knowledge of the user simulation that actual critiquing methods
cannot assume, this method serves as an approximate upper bound.
Now we list all critiquing methods used in our experiments:

e Oracle-UB: Oracular upper bound as defined above.

e UAC: Uniform Average Critiquing from Equation (10).

e BAC: Balanced Average Critiquing from Equation (12).

e LP 1-3: See respective Equations (15), (16) (r=100), & (17).

4.5 Critiquing Empirical Results

4.5.1 Average Success Rate and Session Length. Table 4 shows the
percentage of target items that successfully reach a rank of N
€ {1,5, 10} before the session terminates and Table 5 shows the
average length of these sessions (both results averaged over users).
From Table 3, we observe that the Beer dataset is much more dense
than CDs&Vinyl in terms of the number of ratings per user and
the number of keyphrases they used; this leads to marginally better

Overall, we see that simply averaging the latent user and critique
embeddings in UAC and BAC provide a reasonably strong baseline
method, though there is no clear winner among the two across both
datasets. We see that LP1 outperforms all other methods and further
that LP2 and LP3 are weaker than LP1, UAC, and BAC, indicating
that the nuanced choice of optimization objective and constraints
is critical for good performance. The results suggest that the more
extreme A weight range of LP2 hurt performance and thus the
restricted weight range of LP1 serves as a sort of “regularization”
effect on how well the optimized weighting generalizes to the next
step. Constraining total weight magnitude to force trade-offs in the
weighting of each critique in LP3 appears to hurt performance.

4.5.2 Long-tail Item Analysis. In Figure 3, we split items by popu-
larity into the top 20% tail 80% of items and report average success
rate at target rank N = 5. All models perform better for the top 20%
of items since they are more popular and likely to be recommended.
LP3 provides strong performance on the top 20% items (outper-
forming even Oracle-UB on CDs&Vinyl) since it is the one method
that can ignore the user embedding and rely solely on popularity
bias. For the tail 80% of items, LP1 performs competitively showing
that optimization combined with consideration of the base user
embedding is helpful to retrieve more personalized long-tail items.
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